98世界杯主题曲_世界杯4强 - dajimy.com

Watson J. D.; Crick F. H. C. Genetical implications of the structure of deoxyribonucleic acid. Nature, 1953, 269, 1967-1969. doi:10.1038/171964b0http://dx.doi.org/10.1038/171964b0

Dong Y. H.; Yao C.; Zhu Y.; Yang L.; Luo D.; Yang D. Y. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev., 2020, 120, 9420-9481. doi:10.1021/acs.chemrev.0c00294http://dx.doi.org/10.1021/acs.chemrev.0c00294

El-Sagheer A. H.; Brown, T. Click chemistry with DNA. Chem. Soc. Rev., 2010, 39, 1388-1405. doi:10.1039/b901971phttp://dx.doi.org/10.1039/b901971p

Hu Q. Q.; Li H.; Wang L. H.; Gu H. Z.; Fan C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev., 2019, 119, 6459-6506. doi:10.1021/acs.chemrev.7b00663http://dx.doi.org/10.1021/acs.chemrev.7b00663

Chen H. L.; Fraser Stoddart J. From molecular to supramolecular electronics. Nat. Rev. Mater., 2021, 6, 804-828. doi:10.1038/s41578-021-00302-2http://dx.doi.org/10.1038/s41578-021-00302-2

Lörtscher E. Wiring molecules into circuits. Nat. Nanotechnol., 2013, 8, 381-384. doi:10.1038/nnano.2013.105http://dx.doi.org/10.1038/nnano.2013.105

Eley D. D.; Spivey D. I. Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state. Trans. Faraday Soc., 1962, 58, 411-415. doi:10.1039/tf9625800411http://dx.doi.org/10.1039/tf9625800411

Zhuravel R.; Stern A.; Fardian-Melamed N.; Eidelshtein G.; Katrivas L.; Rotem D.; Kotlyar A. B.; Porath D. Advances in synthesis and measurement of charge transport in DNA-based derivatives. Adv. Mater., 2018, 30, 1706984. doi:10.1002/adma.201706984http://dx.doi.org/10.1002/adma.201706984

Semchenko I. V.; Khakhomov S. A. Application of DNA molecules in nature- inspired technologies: a mini review. Front. Nanotechnol., 2023, 5, 1185429. doi:10.3389/fnano.2023.1185429http://dx.doi.org/10.3389/fnano.2023.1185429

Marrs J.; Lu Q. Y.; Pan V.; Ke Y. G.; Hihath J. Structure-dependent electrical conductance of DNA origami nanowires. ChemBioChem, 2023, 24, e202200454. doi:10.1002/cbic.202200454http://dx.doi.org/10.1002/cbic.202200454

Risser S. M.; Beratan D. N.; Meade T. J. Electron transfer in DNA: predictions of exponential growth and decay of coupling with donor-acceptor distance. J. Am. Chem. Soc., 1993, 115, 2508-2510. doi:10.1021/ja00059a057http://dx.doi.org/10.1021/ja00059a057

Meade T. J.; Kayyem J. F. Electron transfer through DNA: site-specific modification of duplex DNA with ruthenium donors and acceptors. Angew. Chem. Int. Ed., 1995, 34, 352-354. doi:10.1002/anie.199503521http://dx.doi.org/10.1002/anie.199503521

Mislick K. A.; Baldeschwieler J. D.; Kayyem J. F.; Meade T. J. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjugate Chem., 1995, 6, 512-515. doi:10.1021/bc00035a002http://dx.doi.org/10.1021/bc00035a002

Holmlin R. E.; Dandliker P. J.; Barton J. K. Charge transfer through the DNA base stack. Angew. Chem. Int. Ed., 1997, 36, 2714-2730. doi:10.1002/anie.199727141http://dx.doi.org/10.1002/anie.199727141

Hall D. B.; Holmlin R. E.; Barton J. K. Oxidative DNA damage through long-range electron transfer. Nature, 1996, 382, 731-735. doi:10.1038/382731a0http://dx.doi.org/10.1038/382731a0

Kelley S. O.; Barton J. K. Electron transfer between bases in double helical DNA. Science, 1999, 283, 375-381. doi:10.1126/science.283.5400.375http://dx.doi.org/10.1126/science.283.5400.375

Sabatani E.; Nikol H. D.; Gray H. B.; Anson F. C. Emission spectroscopy of Ru(bpy)2dppz2+ in nafion. Probing the chemical environment in cast films. J. Am. Chem. Soc., 1996, 118, 1158-1163. doi:10.1021/ja9531790http://dx.doi.org/10.1021/ja9531790

Gray H. B. Biological inorganic chemistry at the beginning of the 21st century. Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3563-3568. doi:10.1073/pnas.0730378100http://dx.doi.org/10.1073/pnas.0730378100

Gray H. B.; Winkler J. R. Long-range electron transfer. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 3534-3539. doi:10.1073/pnas.0408029102http://dx.doi.org/10.1073/pnas.0408029102

Shih C. T.; Roche S.; Römer R. A. Point-mutation effects on charge-transport properties of the tumor-suppressor Genep53. Phys. Rev. Lett., 2008, 100, 018105. doi:10.1103/physrevlett.100.018105http://dx.doi.org/10.1103/physrevlett.100.018105

Caetano R. A.; Schulz P. A. Sequencing-independent delocalization in a DNA-like double chain with base pairing. Phys. Rev. Lett., 2005, 95, 126601. doi:10.1103/physrevlett.95.126601http://dx.doi.org/10.1103/physrevlett.95.126601

Wang K. DNA-based single-molecule electronics: from concept to function. J. Funct. Biomater., 2018, 9, 8. doi:10.3390/jfb9010008http://dx.doi.org/10.3390/jfb9010008

Göhler B.; Hamelbeck V.; Markus T. Z.; Kettner M.; Hanne G. F.; Vager Z.; Naaman R.; Zacharias H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science, 2011, 331, 894-897. doi:10.1126/science.1199339http://dx.doi.org/10.1126/science.1199339

Maiya B. G.; Ramasarma, T. DNA, a molecular wire or not-the debate continues. Curr. Sci., 2001, 80, 1523-1530.

Abdalla S. Electrical conduction through DNA molecule. Prog. Biophys. Mol., 2011, 106, 485-497. doi:10.1016/j.pbiomolbio.2011.03.001http://dx.doi.org/10.1016/j.pbiomolbio.2011.03.001

Giese, B. Electron transfer in DNA. Curr. Opin. Chem. Biol., 2002, 6, 612-618. doi:10.1016/s1367-5931(02)00364-2http://dx.doi.org/10.1016/s1367-5931(02)00364-2

Porath D.; Cuniberti G.; Di Felice R. Charge transport in DNA-based devices. Topics in Current Chemistry. Berlin, Heidelberg: Springer, 2004, 183-228. doi:10.1007/b94477http://dx.doi.org/10.1007/b94477

Triberis G. P.; Dimakogianni M. DNA in the material world: electrical properties and nano-applications. Recent Pat. Nanotechnol., 2009, 3, 135-153. doi:10.2174/187221009788490040http://dx.doi.org/10.2174/187221009788490040

Dunlap D. D.; García R.; Schabtach E.; Bustamante C. Masking generates contiguous segments of metal-coated and bare DNA for scanning tunneling microscope imaging. Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 7652-7655. doi:10.1073/pnas.90.16.7652http://dx.doi.org/10.1073/pnas.90.16.7652

Braun E.; Eichen Y.; Sivan U.; Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391, 775-778. doi:10.1038/35826http://dx.doi.org/10.1038/35826

de Pablo P. J.; Moreno-Herrero F.; Colchero J.; Gómez Herrero J.; Herrero P.; Baró A. M.; Ordejón P.; Soler J. M.; Artacho E. Absence of dc-conductivity in λ-DNA. Phys. Rev. Lett., 2000, 85, 4992-4995. doi:10.1103/physrevlett.85.4992http://dx.doi.org/10.1103/physrevlett.85.4992

Storm A. J.; van Noort J.; de Vries S.; Dekker C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett., 2001, 79, 3881-3883. doi:10.1063/1.1421086http://dx.doi.org/10.1063/1.1421086

Porath D.; Bezryadin A.; de Vries S.; Dekker C. Direct measurement of electrical transport through DNA molecules. Nature, 2000, 403, 635-638. doi:10.1038/35001029http://dx.doi.org/10.1038/35001029

Rakitin A.; Aich P.; Papadopoulos C.; Kobzar Y.; Vedeneev A. S.; Lee J. S.; Xu J. M. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett., 2001, 86, 3670-3673. doi:10.1103/physrevlett.86.3670http://dx.doi.org/10.1103/physrevlett.86.3670

Yoo K. H.; Ha D. H.; Lee J. O.; Park J. W.; Kim J.; Kim J. J.; Lee H. Y.; Kawai T.; Choi H. Y. Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. Phys. Rev. Lett., 2001, 87(19), 198102. doi:10.1103/physrevlett.87.198102http://dx.doi.org/10.1103/physrevlett.87.198102

Fink H. W.; Schönenberger C. Electrical conduction through DNA molecules. Nature, 1999, 398, 407-410. doi:10.1038/18855http://dx.doi.org/10.1038/18855

Tran P.; Alavi B.; Gruner G. Charge transport along the λ-DNA double helix. Phys. Rev. Lett., 2000, 85, 1564-1567. doi:10.1103/physrevlett.85.1564http://dx.doi.org/10.1103/physrevlett.85.1564

Watanabe H.; Manabe C.; Shigematsu T.; Shimotani K.; Shimizu M. Single molecule DNA device measured with triple-probe atomic force microscope. Appl. Phys. Lett., 2001, 79, 2462-2464. doi:10.1063/1.1408604http://dx.doi.org/10.1063/1.1408604

Kasumov A. Y.; Kociak M.; Guéron S.; Reulet B.; Volkov V. T.; Klinov D. V.; Bouchiat H. Proximity-induced superconductivity in DNA. Science, 2001, 291, 280-282. doi:10.1126/science.291.5502.280http://dx.doi.org/10.1126/science.291.5502.280

Wang K.; Hamill J. M.; Wang B.; Guo C. L.; Jiang S. B.; Huang Z.; Xu B. Q. Structure determined charge transport in single DNA molecule break junctions. Chem. Sci., 2014, 5, 3425-3431. doi:10.1039/c4sc00888jhttp://dx.doi.org/10.1039/c4sc00888j

Artés J. M.; Li Y. H.; Qi J. Q.; Anantram M. P.; Hihath J. Conformational gating of DNA conductance. Nat. Commun., 2015, 6, 8870. doi:10.1038/ncomms9870http://dx.doi.org/10.1038/ncomms9870

Zhu W. G.; Sun Y. J.; Liu J.; Bai S. M.; Zhang Z. C.; Shi Q.; Hu W. P.; Fu H. B. Exciton transport in molecular semiconductor crystals for spin-optoelectronics paradigm. Chemistry, 2021, 27, 222-227. doi:10.1002/chem.202003447http://dx.doi.org/10.1002/chem.202003447

Liu S. P.; Weisbrod S.; Tang Z.; Marx A.; Scheer E.; Erbe A. Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. Angew. Chem. Int. Ed., 2010, 49, 3313-3316. doi:10.1002/anie.201000022http://dx.doi.org/10.1002/anie.201000022

Liu S.; Zhang X. Y.; Luo W. X.; Wang Z. X.; Guo X. F.; Steigerwald M. L.; Fang X. H. Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. Angew. Chem. Int. Ed., 2011, 50(11), 2496-2502. doi:10.1002/anie.201006469http://dx.doi.org/10.1002/anie.201006469

Xu Z.; Li T. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett., 2004, 4, 1105-1108. doi:10.1021/nl0494295http://dx.doi.org/10.1021/nl0494295

Li Y. Q.; Xiang L. M.; Palma J. L.; Asai Y.; Tao N. J. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun., 2016, 7, 11294. doi:10.1038/ncomms11294http://dx.doi.org/10.1038/ncomms11294

Xiang L. M.; Palma J. L.; Bruot C.; Mujica V.; Ratner M. A.; Tao N. J. Intermediate tunnelling-hopping regime in DNA charge transport. Nat. Chem., 2015, 7, 221-226. doi:10.1038/nchem.2183http://dx.doi.org/10.1038/nchem.2183

Giese B.; Amaudrut J.; Köhler A. K.; Spormann M.; Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature, 2001, 412, 318-320. doi:10.1038/35085542http://dx.doi.org/10.1038/35085542

Mantz Y. A.; Gervasio F. L.; Laino T.; Parrinello M. Solvent effects on charge spatial extent in DNA and implications for transfer. Phys. Rev. Lett., 2007, 99, 058104. doi:10.1103/physrevlett.99.058104http://dx.doi.org/10.1103/physrevlett.99.058104

Endres R. G.; Cox D. L.; Singh R. R. P. Colloquium: the quest for high-conductance DNA. Rev. Mod. Phys., 2004, 76, 195-214. doi:10.1103/revmodphys.76.195http://dx.doi.org/10.1103/revmodphys.76.195

Hihath J.; Xu B. Q.; Zhang P. M.; Tao N. J. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 16979-16983. doi:10.1073/pnas.0505175102http://dx.doi.org/10.1073/pnas.0505175102

Cohen H.; Nogues C.; Naaman R.; Porath D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 11589-11593. doi:10.1073/pnas.0505272102http://dx.doi.org/10.1073/pnas.0505272102

Reed M. A.; Zhou C.; Muller C. J.; Burgin T. P.; Tour J. M. Conductance of a molecular junction. Science, 1997, 278, 252-254. doi:10.1126/science.278.5336.252http://dx.doi.org/10.1126/science.278.5336.252

Guo X. F.; Gorodetsky A. A.; Hone J.; Barton J. K.; Nuckolls C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat. Nanotechnol., 2008, 3, 163-167. doi:10.1038/nnano.2008.4http://dx.doi.org/10.1038/nnano.2008.4

Iyer R. R.; Pluciennik A.; Burdett V.; Modrich P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev., 2006, 106, 302-323. doi:10.1021/cr0404794http://dx.doi.org/10.1021/cr0404794

Nogues C.; Cohen S. R.; Daube S.; Apter N.; Naaman R. Sequence dependence of charge transport properties of DNA. J. Phys. Chem. B, 2006, 110, 8910-8913. doi:10.1021/jp060870ohttp://dx.doi.org/10.1021/jp060870o

Villas-Bôas J. M.; Govorov A. O.; Ulloa S. E. Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B, 2004, 69, 125342. doi:10.1103/physrevb.69.125342http://dx.doi.org/10.1103/physrevb.69.125342

Zikic R.; Krstić P. S.; Zhang X. G.; Fuentes-Cabrera M.; Wells J.; Zhao X. C. Characterization of the tunneling conductance across DNA bases. Phys. Rev. E, 2006, 74, 011919. doi:10.1103/physreve.74.011919http://dx.doi.org/10.1103/physreve.74.011919

Zikic R.; Krstić P. S.; Zhang X. G.; Fuentes-Cabrera M.; Wells J.; Zhao X. C. Reply to "comment on 'characterization of the tunneling conductance across DNA bases'". Phys. Rev. E, 2007, 76, 013902. doi:10.1103/physreve.76.013902http://dx.doi.org/10.1103/physreve.76.013902

Yu Z.; Song X. Y. Variable range hopping and electrical conductivity along the DNA double helix. Phys. Rev. Lett., 2001, 86, 6018-6021. doi:10.1103/physrevlett.86.6018http://dx.doi.org/10.1103/physrevlett.86.6018

Kutnjak Z.; Lahajnar G.; Filipič C.; Podgornik R.; Nordenskiöld L.; Korolev N.; Rupprecht A. Electrical conduction in macroscopically oriented deoxyribonucleic and hyaluronic acid samples. Phys. Rev. E, 2005, 71(4), 041901. doi:10.1103/physreve.71.041901http://dx.doi.org/10.1103/physreve.71.041901

Jortner J.; Bixon M.; Voityuk A. A.; Rösch N. Superexchange mediated charge hopping in DNA. J. Phys. Chem. A, 2002, 106(33), 7599-7606. doi:10.1021/jp014232bhttp://dx.doi.org/10.1021/jp014232b

Gutiérrez R.; Mandal S.; Cuniberti G. Dissipative effects in the electronic transport through DNA molecular wires. Phys. Rev. B, 2005, 71(23), 235116. doi:10.1103/physrevb.71.235116http://dx.doi.org/10.1103/physrevb.71.235116

Klotsa D.; Römer R. A.; Turner M. S. Electronic transport in DNA. Biophys. J., 2005, 89(4), 2187-2198. doi:10.1529/biophysj.105.064014http://dx.doi.org/10.1529/biophysj.105.064014

Li Y. H.; Artés J. M.; Demir B.; Gokce S.; Mohammad H. M.; Alangari M.; Anantram M. P.; Oren E. E.; Hihath J. Detection and identification of genetic material via single-molecule conductance. Nat. Nanotechnol., 2018, 13(12), 1167-1173. doi:10.1038/s41565-018-0285-xhttp://dx.doi.org/10.1038/s41565-018-0285-x

Wang X. L.; Gao L.; Liang B.; Li X.; Guo X. F. Revealing the direct effect of individual intercalations on DNA conductance toward single-molecule electrical biodetection. J. Mater. Chem. B, 2015, 3, 5150-5154. doi:10.1039/c5tb00666jhttp://dx.doi.org/10.1039/c5tb00666j

Lin J. F.; Wang S. D.; Zhang F.; Yang B. W.; Du P. W.; Chen C. F.; Zang Y. P.; Zhu D. B. Highly efficient charge transport across carbon nanobelts. Sci. Adv., 2022, 8, eade4692. doi:10.1126/sciadv.ade4692http://dx.doi.org/10.1126/sciadv.ade4692

Lv Y. X.; Lin J. F.; Song K.; Song X. W.; Zang H. J.; Zang Y. P.; Zhu D. B. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. Sci. Adv., 2021, 7, eabk3095. doi:10.1126/sciadv.abk3095http://dx.doi.org/10.1126/sciadv.abk3095

Jia C. C.; Migliore A.; Xin N.; Huang S. Y.; Wang J. Y.; Yang Q.; Wang S. P.; Chen H. L.; Wang D. M.; Feng B. Y.; Liu Z. R.; Zhang G. Y.; Qu D. H.; Tian H.; Ratner M. A.; Xu H. Q.; Nitzan A.; Guo X. F. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science, 2016, 352, 1443-1445. doi:10.1126/science.aaf6298http://dx.doi.org/10.1126/science.aaf6298

Lin J. F.; Lv Y. X.; Song K.; Song X. W.; Zang H. J.; Du P. W.; Zang Y. P.; Zhu D. B. Cleavage of non-polar C(sp2)‒C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun., 2023, 14, 293. doi:10.1038/s41467-022-35686-4http://dx.doi.org/10.1038/s41467-022-35686-4

Li P. H.; Chen Y. J.; Wang B. Y.; Li M. M.; Xiang D.; Jia C. C.; Guo X. F. Single-molecule optoelectronic devices: physical mechanism and beyond. Opto Electron. Adv., 2022, 5, 210094. doi:10.29026/oea.2022.210094http://dx.doi.org/10.29026/oea.2022.210094

Tang C.; Stuyver T.; Lu T. G.; Liu J. Y.; Ye Y. L.; Gao T. Y.; Lin L. C.; Zheng J. T.; Liu W. Q.; Shi J.; Shaik S.; Xia H. P.; Hong W. J. Voltage-driven control of single-molecule keto-enol equilibrium in a two-terminal junction system. Nat. Commun., 2023, 14, 3657. doi:10.1038/s41467-023-39198-7http://dx.doi.org/10.1038/s41467-023-39198-7

Jia C. C.; Ma B. J.; Xin N.; Guo X. F. Carbon electrode-molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res., 2015, 48, 2565-2575. doi:10.1021/acs.accounts.5b00133http://dx.doi.org/10.1021/acs.accounts.5b00133

Xin N.; Guan J. X.; Zhou C. G.; Chen X.; Gu C. H.; Li Y.; Ratner M. A.; Nitzan A.; Stoddart J. F.; Guo X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys., 2019, 1, 211-230. doi:10.1038/s42254-019-0022-xhttp://dx.doi.org/10.1038/s42254-019-0022-x

Li R. H.; Zhou Y.; Ge W. H.; Zheng J. T.; Zhu Y. X.; Bai J.; Li X. H.; Lin L. C.; Duan H. C.; Shi J.; Yang Y.; Liu J. Y.; Liu Z. T.; Hong W. J. Strain of supramolecular interactions in single-stacking junctions. Angew. Chem. Int. Ed., 2022, 61, e202200191. doi:10.1002/anie.202200191http://dx.doi.org/10.1002/anie.202200191

Zhao S. Q.; Wu Q. Q.; Pi J. C.; Liu J. Y.; Zheng J. T.; Hou S. J.; Wei J. Y.; Li R. H.; Sadeghi H.; Yang Y.; Shi J. A.; Chen Z. B.; Xiao Z. Y.; Lambert C.; Hong W. J. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv., 2020, 6, eaba6714. doi:10.1126/sciadv.aba6714http://dx.doi.org/10.1126/sciadv.aba6714

Feng A. N.; Zhou Y.; Al-Shebami M. A. Y.; Chen L. C.; Pan Z. C.; Xu W.; Zhao S. Q.; Zeng B. F.; Xiao Z. Y.; Yang Y.; Hong W. J. σ-σ Stacked supramolecular junctions. Nat. Chem., 2022, 14, 1158-1164. doi:10.1038/s41557-022-01003-1http://dx.doi.org/10.1038/s41557-022-01003-1